"In silico and In vitro Studies of the Cytotoxicity and the Mode of Action of Dichapetalins A and M

MARY ANTI CHAMA

UNIVERSITY OF GHANA

OUTLINE

- INTRODUCTION
- METHODS
- RESULTS
- DISCUSSION
- 2 CONCLUSION

SOURCES OF DRUGS - approaches

- Traditional approach–Extracts
- Conventional approach- state of the art syst
- Receptor theory of drug action
- a) chemicals in extracts are responsible for a drug's biological activity.
- b) elucidate the chemical structures
- c) rise of synthetic chemistry (1)

Evolving new approach

- Application of computational techniques
- E.g. In silico studies to understand the mode of action of Cassia auriculata(CA) (Fauzi et al, 2016) compounds
- Based on both *in silico* and *in vivo* studies, they concluded that CA mediates glucose/lipid metabolism via the PI3K* signalling pathway.

Present study - Aim

• In vitro cytotoxicity of two compounds from D. madagascariense

 Possible mode of action of two dichapetalins A and M with *in silico* studies and *in vitro* validation

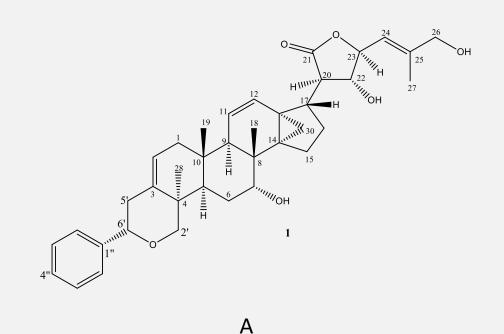
Dichapetalum madagascariense

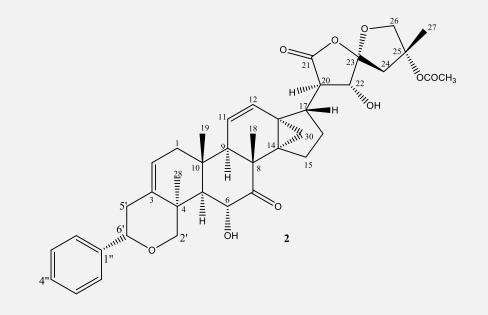
- Out of these 9 from *D. madagascariense*
- Bacterial infections
- Jaundice
- Viral hepatitis
- Rodenticides

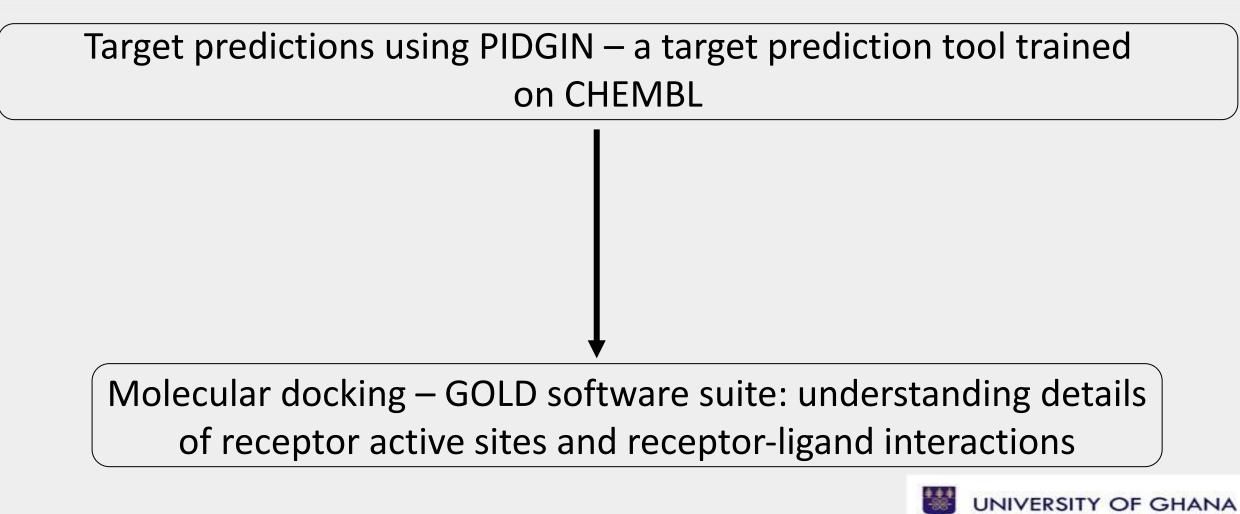
Confirmed Biological Activities

Cytotoxicity

•

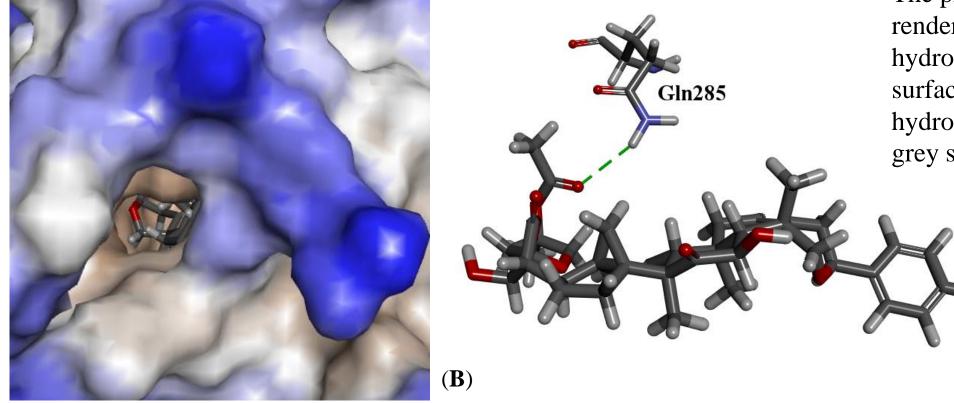

•


- Dichapetalin A exhibited anti-proliferative effects
 - T-lymphocytic leukemia (Jurkat), acute promyelocytic leukemia (HL-60) and Tlymphoblast-like leukemia (CEM) cell lines (Osei-Safo et al., 2017).
 - Cytotoxicity against various cancer cell lines (Achenbach et al., 1995; Addae-
 - Mensah et al., 1996; Fang et al., 2006; Long et al., 2013).


Isolation and identification of dichapetalins

- Chromatographic separation of the root acetone extracts
- Comparative spectroscopic and physicochemical methods

IN SILICO METHODS


Table 1: Gene scores of predicted targets for dichapetalins A and M from D. madagascariense.

Gene ID	Gene name	Organism	Dichapetalin A	Dichapetalin M
pxr	Pregnane X receptor	Rat	0.780	0.738
SHBG	Sex hormone-binding globulin	Human	0.764	0.754
srd5a2	3-oxo-5-alpha-steroid 4- dehydrogenase 2	Rat	0.763	0.870
shbg	Sex hormone-binding globulin	Rat	0.733	0.514
ache	Acetylcholinesterase	Pacific electric ray	0.721	0.803
FXR	Farnesoid X-activated receptor	Human	0.707	0.350
ar	Androgen receptor	Mouse	0.678	0.451
fxr	Farnesoid X-activated receptor	Mouse	0.666	0.291
PPM1B	Protein phosphatase 1B	Human	0.662	0.677
PIP5KIC	Phosphatidylinositol 4-phosphate 5- kinase type-1 gamma	Human	0.641	0.512
cpk1	Calcium-dependent protein kinase 1	P. falciparum (3D7)	0.6282	0.579

OF GHANA

Docking pose of dichapetalins M

The docked configuration of **Dichapetalin M** in the binding site of NR112 as predicted by ChemPLP (A) The ligand occupies the binding pocket

The protein surface is rendered. Blue depicts a hydrophilic region on the surface; brown depicts hydrophobic region and grey shows neutral areas

(A)

. (**B**) Hydrogen bonds are shown as green line between **Dichapetalin M** and the amino acid Gln285..

 Table 2: Results of the scoring function for the ligands against NR112

Ligand	ASP	PLP	CS	GS
CO-crystallized ligand	27.2	71.9	29.2	59.3
Dichapetalin A	-19.7	2.6	18.7	-101.7
Dichapetalin M	-31.6	-37.4	10.2	-75.3

There was only one way dichapetalins M could bind

Nuclear hormone receptor family 1, group I member 2 (NR1I2, PXR)

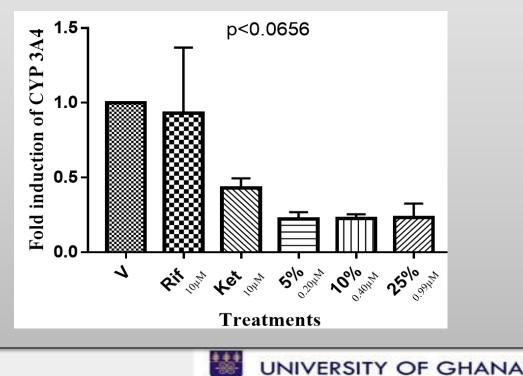
- Controls inducible expression of xenobiotics handling genes including biotransformation enzymes and drug transporters
- It is activated by a range of compounds that induce CYP3A4, including rifampicin

Table 3: Cytotoxic effect of Dichapetalins A and M on MCF-7 cells via the MTT assay

Compounds	Treatment	IC ₅₀ (μΜ)	R ²	CI
	time (hrs)			
Dichapetalin A	48	>100	-	-
	72	>100	-	-
Dichapetalin M	48	4.71	0.7509	2.813µM – 7.203µM
	72	3.95	0.8169	2.519µM - 6.007µM
Curcumin	48	17.49	0.8901	12.85µM - 23.07µM
	72	12.53	0.8878	8.915µM - 16.87µM

Dichapetalins M was more potent than the standard drug Curcumin

Target Validation


- To validate Dich M binding to NR1I2 (pxr) in vitro
- MCF-7 cell lines were treated with a PXR agonist control (rifampicin) to determine if dichapetalin M acts as an antagonist or an agonist to the receptor
- by evaluating its effect on CYP3A4, a downstream target of PXR

• Ketoconazole (Ket), an antagonist on both human HepG2 and MCF-7 Cells

Fig. 1. Effect of dichapetalin M on the expression of CYP3A4 in MCF-7

• Real-time qPCR was performed after exposure of MCF-7 cell line to dichapetalin M (at 5%, 10% and 25% of its 72 hrs IC₅₀ value) for 24 hrs and extracting RNA for expression studies.

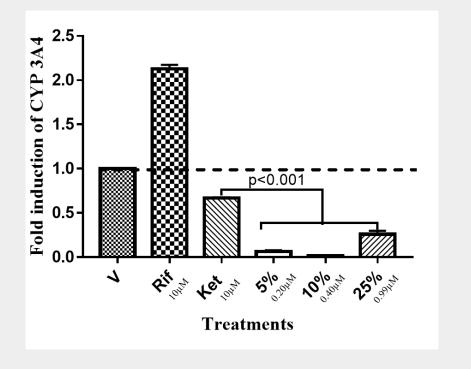

Rifampicin treatment resulted in no significant change in the expression of CYP3A4 in MCF-7 but caused a significant increase in the expression of CYP3A4 (about 2.5-fold) after 24 hrs treatment of HepG2

Fig. 2. Effect of dichapetalin M on the expression of CYP3A4 in HepG2 cells

• Real-time qPCR was performed after exposing of MCF-7 cell line to dichapetalin M (at 5%, 10% and 25% of its 72 hrs IC₅₀ value) for 24 hrs and extracting RNA for expression studies.

Ketoconazole caused a significant decrease in the expression of CYP3A4 in both cell lines as expected.

Discussion

• Dichapetalin M was the most potent cytotoxic dichapetalin against HCT116 ($EC_{50} = 9.9x10-9$ 622 M) and WM 266-4 ($EC_{50} = 7.8x10$ 623 -8 M) cell lines when tested together with 13 different dichapetalins (Long et al., 2013).

• Structurally, the stability of the spiroketal moiety, which is absent in dichapetalin A may contribute substantially to the significant activity of dichapetalin M against MCF-7 cell lines compared to dichapetalin A.

Discussion

• In terms of toxicity, previous study of dichapetalin M on brine shrimp indicated an LC_{50} of 0.011 µg/ml (Osei-safo et al., 2008), a value that is 20-fold more active than that of dichapetalin A (0.31 µg/ml

Conclusion

- predict both human and non-human targets for dichapetalins A and M and validated the effects of dichapetalin M on the human PXR ortholog.
- Dichapetalin M acted as an antagonist to the PXR by significantly down regulating the expression of CYP3A4 in both cell lines, however, this observation did not occur 607 in a dose-dependent manner. 22 608

Acknowledgment

- Department of Chemistry, University of Ghana,
- Department of Chemistry, University of Cambridge, UK
- School of Chemical Sciences, The University of Auckland, New Zealand
- Department of Biochemistry Cell and Molecular Biology, UG
- West African Centre for Cell Biology of Infectious Pathogens, UG
- University of Ghana Research fund

OF GHANA

UNIVERSITY OF

CAMBRIDGE